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Edge-Directed Prediction for Lossless Compression
of Natural Images

Xin Li , Member, IEEE,and Michael T. Orchard, Fellow, IEEE

Abstract—This paper sheds light on the recent least-square
(LS)-based adaptive prediction schemes for lossless compression
of natural images. Our analysis shows that the superiority of
the LS-based adaptation is due to its edge-directed property,
which enables the predictor to adapt reasonably well from smooth
regions to edge areas. Recognizing that LS-based adaptation
improves the prediction mainly around the edge areas, we pro-
pose a novel approach to reduce its computational complexity
with negligible performance sacrifice. The lossless image coder
built upon the new prediction scheme has achieved noticeably
better performance than the state-of-the-art coder CALIC with
moderately increased computational complexity.

Index Terms—Edge-directed prediction, least-square optimiza-
tion, lossless image compression, orientation adaptation.

I. INTRODUCTION

L INEAR prediction is an effective tool for decorrelating sta-
tionary Gaussian processes, providing the basis for effi-

cient lossless coding of such sources. However, natural images
are characterized by abrupt changes in local statistics and adap-
tive approaches to linear prediction are needed to fully exploit
the dependencies within images. Context-based adaptive pre-
diction schemes [1] have shown significant improvements over
fixed prediction schemes such as lossless JPEG [4]. Their rep-
resentatives include gradient adaptive prediction (GAP) used
by the state-of-the-art coder CALIC [3] and median edge de-
tector (MED) adopted by the new lossless image compression
standard JPEG-LS [2]. Context-based adaptive prediction can
be viewed as the switched prediction that adapts to changing
statistics with an experimentally tuned switching function. Re-
cently, a new class of least-square (LS)-based adaptive predic-
tion schemes [6]–[11] have demonstrated impressive improve-
ments over former context-based adaptive prediction schemes.
In this paper, we want to shed light on the superiority of the
LS-based adaptation and present a novel approach to reduce its
computational complexity.

The idea of LS-based adaptation dates back to [5], which im-
proves the performance of lossless JPEG by locally optimizing
the prediction coefficients. The computational complexity of
optimizing the predictor through the LS optimization process
on a pixel-by-pixel basis was regarded as prohibitive, which
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impeded its application into practice. Recently, with more
powerful computing facilities, the method of LS-based adapta-
tion has been rediscovered independently by several research
groups [6], [7], [11]. However, little insight into the superiority
of LS-based adaptation has been yielded so far. Here, we pro-
vide an interpretation from the viewpoint of its edge-directed
property. The dominant role of the pixels around the edge in the
LS optimization process makes the predictor adapt reasonably
well from smooth regions to edge areas. Illustrative example is
used to explain how the support of the predictor is tuned by the
LS method to match the edge orientation.

Recognizing that the LS-based adaptation method improves
the prediction performance mainly around the edge areas, we
propose a novel way of reducing the overall computational
complexity. Instead of performing the LS optimization on
a pixel-by-pixel basis, we update the predictor coefficients
only when the magnitude of the prediction error is beyond a
pre-selected threshold. Since the set of the optimal predictors
for an edge belongs to the set of optimal predictors for the
smooth region, updating the prediction coefficients on an
edge-by-edge basis is enough to achieve the gain offered by
LS-based adaptation. Therefore we propose to store the pre-
dictor coefficients optimized for an edge and repeat using them
until the scanning reaches the next edge event. By modestly
increasing the memory requirement, we can achieve significant
reduction on the computational complexity. Simulation results
have shown that a typical gray-scale image with the size of
512 512 can be compressed within seconds on a common
computing machine.

The rest of this paper is organized as follows. Section II-A
starts from the overview of LS-based adaptive prediction
schemes. We explain the edge-directed property of the LS
optimization and provide some quantitative analysis using an
illustrative example in Section II-B. In Section II-C, we present
the new approach of reducing the computational complexity.
Experiment results are included in Section III to support
the efficiency of the new prediction scheme. We make some
conclusions in Section IV.

II. EDGE DIRECTED PREDICTION

A. Least-Square-Based Adaptation

Throughout this paper, we useto denote the spatial coordi-
nate in an image. Suppose the image is scanned in a raster-scan-
ning order; then the prediction of is always based on its
past causal neighbors (so-called “context”). The motivation be-
hind prediction-based lossless image coders is that if the pre-
dictive model can accurately characterize the spatial correlation

1057–7149/01$10.00 © 2001 IEEE



814 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

Fig. 1. Ordering of the causal neighbors.

among the pixels, prediction residues would be mostly decor-
related and become easier to model. The major challenge is the
development of an accurate predictive model, i.e., how to fully
exploit the information contained in the context to resolve the
uncertainty of .

A reasonable assumption made with the natural-image source
is the th order Markovian property. That is, we only need to
consider the nearest causal neighbors in the prediction (as
shown in Fig. 1 for the case of )

(1)

Former context-based adaptive prediction schemes such as GAP
[3] and MED [2] employ the edge-detection based switching
mechanism to achieve reasonable adaptation from smooth re-
gions to edge areas. However, ad-hoc switching strategies can
not effectively handle nontrivially oriented edges and produce
large prediction errors around them. Intuitively, an optimal pre-
diction scheme would detect the edge event first and then predict
along the edgeorientation. However, robust edge detection and
orientation estimation in an explicit fashion are difficult prob-
lems themselves, let alone how to exploit the orientation infor-
mation during the prediction.

LS-based adaptive prediction schemes [6]–[11] provide an
attractive alternative to achieve orientation adaptation and ap-
proximate the optimal prediction. Instead of detecting the edge
or estimating the orientation explicitly, LS-based approaches
locally optimize the prediction coefficients inside a causal
window (called “training window”). A convenient choice of
the training window is the double-rectangular window, which
contains causal neighbors, as shown in Fig. 2
Let us denote the training window by a column vector

. Then the prediction neighbors
of would form an matrix

...
...

where is the th prediction neighbor of .
The prediction coefficients are solved though LS optimization
inside the training window: . It is well-known
that the LS optimization has a closed-form solution

(2)

Fig. 2. Training window used to optimize the prediction coefficients.

where is the optimized prediction coeffi-
cients.

We can also derive the above result by following the tradi-
tional linear prediction theory [14]. It is well-known that the
MMSE prediction for a stationary Gaussian process is deter-
mined by the second-order statistics (covariance) only

(3)

where

and

Geometrically, (3) is the projection of onto the subspace
spanned by in the LS sense. However,
the image source often violates the assumption of stationary
Gaussian process. A practical approach to handle such nonsta-
tionary source is to instantaneously estimate the local statistics.
If we keep the above definition of and , the instantaneously
estimated second-order statistics ( ) can be written as
[14]

(4)

Plugging (4) into (3), we obtain (2) again. To have more insight
into the method of LS-based adaptation, we provide the inter-
pretation from the point of view of its edge-directed property, as
we shall detail next.

B. Edge-Directed Property

The effectiveness of any adaptive prediction scheme depends
on its capability of adapting from smooth regions to edge areas.
The difficulty of achieving ideal adaptation mainly arises from
the edge areas because the orientation of an edge could be ar-
bitrary. Though it is easy to imagine that an optimal prediction
should always go along the edge orientation, the implementa-
tion of such idea is not trivial. As aforementioned, explicit ap-
proaches of doing the edge detection and the orientation estima-
tion often have their own limitations (e.g., robustness). In con-
trast, the approach of LS-based adaptation provides an elegant
way of approximating the optimal orientation adaptive predic-
tion due to its edge-directed property.
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Fig. 3. Example of a vertical edge.

Edge-directed property refers to the dominant role played
by the pixels around an edge in the LS optimization process,
which gives the name “edge-directed prediction” (EDP). Intu-
itively, the causal neighbors in the training window can be clas-
sified into two classes: theedgeneighbors (around the edge) and
thenonedgeneighbors (away from the edge). For the nonedge
neighbors, the matrix is often not full-ranked and the LS op-
timization does not have a unique solution. In fact, the set of
optimal predictors for the nonedge neighbors lies in a hyper-
plane in the -dimensional space. While for
the edge neighbors, the matrixis usually full-ranked and the
LS optimization does have a unique solution. It is easy to see that
the set of optimal predictors for the edge neighbors is a subset of
the hyperplane . Consequently, the edge neigh-
bors would dominate the LS optimization process.

The LS optimization over the whole training window offers
a convenient way of finding the optimal prediction coefficients
for the edge neighbors without the necessity of edge detection.
Moreover, the predictor coefficients optimized for the edge
neighbors of are also suitable for because it
belongs to the same edge. Therefore, no explicit estimation
of the edge orientation is necessary. In order to incorporate
enough edge neighbors into the training window, the window
size is chosen to be . Empirical studies show that
the window size larger than seven does not further improve the
prediction performance.

To strengthen our arguments on the edge-directed property,
we use a simple illustrative example to quantitatively analyze
the relationship between the predictor support and the edge ori-
entation. Fig. 3 shows the example in which the current pixel

is along a sharp vertical edge ( ). For sim-
plicity, we only consider the second-order predictor

, in which case
the training window has 12 elements. By some simple deriva-
tion, we obtain the estimated covariances from (2)

(5)

and

(6)

Then it is straightforward to verify that the optimized prediction
coefficients are given by

(7)

Equation (7) shows that the predictor support is ideally
aligned along the edge orientation (the vertical direction). The
case of a horizontal edge can be justified in a similar fashion.
When the edge is nontrivially oriented and the predictor order is
more than two, mathematical derivation becomes complicated.
However, our experiments with synthetic images [11] have ver-
ified that the LS optimization is capable of tuning the predictor
support to match an arbitrarily oriented edge. We have also
compared the prediction residue images given by the different
adaptive prediction schemes for the real-world images. Fig. 4
shows the amplitude images of prediction residues given by
MED, GAP and a tenth-order EDP for the “Lennagrey” image.
It can be clearly seen that EDP produces much smaller errors
around the edge areas than both MED and GAP.

C. Computational Complexity

The principle drawback with the edge-directed prediction is
its prohibitive computational complexity. The bottleneck of the
LS optimization is the computation of the covariance matrix

in (4). In [5] and [6], conventional “inclusion-and-exclu-
sion” techniques are employed to more efficiently update the
estimated covariance matrix. They are based on the observation
that the overlapping of the adjacent training windows can be
used to speed up the implementation. In this section, we present
a novel approach of reducing the computational complexity of
the edge-directed prediction while maintaining its performance.
The computation savings are achieved by performing the LS op-
timization only for a fraction of the pixels in the image.

The motivation behind our approach is based on the following
two observations with the edge-directed prediction: one is that
the prediction coefficients optimized for a pixel around an edge
are often also suitable for its neighbors along the same edge;
the other is that the set of optimal predictors for an edge is the
subset of the set of optimal predictors for the smooth regions.
Therefore, the prediction coefficients optimized for an edge can
be stored and repeatedly used until the scanning reaches the next
edge event. In other words, we want to perform the LS optimiza-
tion on an edge-by-edge basis rather than on a pixel-by-pixel
basis.

To implement the above idea, we propose the following
switching strategy: only if the amplitude of the prediction
residue is beyond a pre-selected
threshold , the LS optimization is activated to update the
prediction coefficients; otherwise we employ the stored co-
efficients to predict the next pixel. An implementation in the
Pseudo-C code in the one-dimensional (1-D) case is shown
in Fig. 5. For two-dimensional (2-D) images, we can use
the stored prediction coefficients of the nearest four causal
neighbors to generate four prediction values and take their
average as the final prediction result. As an example, Fig. 6
shows the locations where the LS optimization is performed
in the “Lennagrey” image when is set to be eight. Overall,
less than 10% of pixels activate the LS optimization, which
means the computation savings by an order of the magnitude.
Meanwhile, the performance sacrifice brought by the above
switching strategy is negligible.
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(a)

(b)

(c)

Fig. 4. Residue images of Lennagrey after different prediction schemes. (a)
MED(H = 4:56 bpp), (b) GAP(H = 4:39 bpp), and (c) EDP(H = 4:22

bpp).

III. EXPERIMENTAL RESULTS

In this section, we shall use extensive experiment results to
demonstrate 1) theperformanceofEDP with the different predic-
tionorder and2)thetradeoffbetweenthecomplexityand

Fig. 5. Pseudo-C implementation of switching strategy in the 1-D scenario.

Fig. 6. Pixels in Lennagrey image where LS optimization is performed (the
total number is 25 870).

the performance achieved by EDP for lossless image compres-
sion. To have a fair comparison, we download eight gray-scale
(8-bit) images from Bernie’s TMW0.51 home page [12] as our
test set. Their entropy values are relatively large because they all
contain plenty of edges. Such choice of the test set makes it easier
toobservethegainbroughtbyLS-basedadaptationaroundedges.

To compare the performance of the different adaptive predic-
tion schemes, we use the first-order entropy of the prediction
residue image as the objective measure. EDP is compared with
two of the very best context-based adaptive prediction schemes:
MED [2] and GAP [3]. Since the performance of EDP depends
on the prediction order , we change it from low (4) to high (10)
to observe the evolution of the entropy values. For any given,
the size of the training window is chosen to be .
From Table I, we can make the following conclusions: 1) the
gain of EDP over MED and GAP quickly saturates as the predic-
tion order increases. For most images, a sixth-order predictor
almost exploits all the gain offered by LS-based adaptation and
2) the gain is image-dependent. For the images containing abun-
dant strong edges such as “barb,” EDP significantly outperforms
MED and GAP.

We have also developed a complete lossless image coder
and compared it with the current state-of-the-art coders such as
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TABLE I
FIRST-ORDERENTROPY(BPP) COMPARISON AMONGMED, GAPAND EDP

TABLE II
COMPARISONPERFORMANCE(BPP) COMPARISON AMONGCALIC, TMW, AND

EDP. THE LAST COLUMN INCLUDES THERUNNING TIME OF EDP ON A

CELERON 500 M MACHINE

CALIC [3] and TMW [12]. Our coder is built on a 6th order
EDP and employs ad-hoc context modeling techniques for
the prediction residues. The coding context is the quantized
local variance in the prediction residue domain and we borrow
similar bias cancellation techniques from CALIC [1]. As shown
in Table II, we have achieved noticeably better performance
than CALIC with moderately increased complexity. Though
TMW still outperforms EDP, the complexity of our EDP coder
is much lower than that of the TMW coder (seconds versus
hours). Other researchers have shown that the gap between
EDP and TMW can be further reduced by more sophisticated
modeling and coding techniques [9].

IV. CONCLUSIONS

In this paper, we provide an interpretation of the LS-based
adaptive prediction from the edge-orientation point of view. Its
superior performance is attributed to the edge-directed prop-
erty of the LS optimization. Based on a better understanding
of LS-based adaptation, we propose a novel approach of re-
ducing its computational complexity. The LS optimization is
performed only for a fraction of pixels in the image. The per-
formance and the complexity of our lossless image coder built
upon the edge-directed prediction lie somewhere between those
of CALIC and TMW. The edge-directed property of the LS op-
timization has also found other important applications in other
image processing tasks such as error concealment [13].
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